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* The Phoenix Story

* Spacecraft Overview

 Phoenix EDL Overview

* Mission Design Comparison
 Hypersonic Subphase Evolution
 Parachute Subphase Evolution
 Terminal Descent Subphase Evolution
* Summary
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Communications: UHF-band to Orbiters
+ Final EDL Parameter Update: E-3hr; Entry State Initialization: E-10min

v ,
jf /) - Cruise Stage Separation: E-7min Entry Prep
A 1  Entry Turn Starts: E-6.5 min. Turn completed by E-5min.
' 4 » Entry: E-Os, L-419s, 125 km*, r=3522.2 km, 5.6 km/s, y = -13.0 deg
Vf + Peak Heating: 45 W/cm? Peak Deceleration: 9.3G Hypersonic
" - Parachute Deployment: E+224s, L-195s, 11.5 km, Mach 1.46
_  Heat Shield Jettison: E+239s, L-180s, 9.8 km, 109 m/s
Q@ - Leg Deployments: E+249s, L-170s Parachute
0 » Radar Activated: E+259s, L- 160s
@ « Lander Separation: E+382s, L-37s, 0.94 km, 53 m/s
Landing at ' L__ - Throttle Up: E+385s, L-34s, 0.72 km Terminal Descent
-3.510 -5.0 km - Constant Velocity Achieved: E+404s, L-15s, 0.047 km
Elevation (MOLA
relative)

* Touchdown: E+419s, L-0s, 0 km, Vv=2.4 +1 m/s, Vh<1.4 m/s —|
* Dust Settling: L+0 to L+15min ep

Lander Pr

* Fire Pyros for Deployme

* Entry altitude referenced to equatorial radius.
All other altitudes referenced to ground level

Note: Information in this graphic represents a nominal entry (67.5N Open, -3.7 km site elevation). Dispersions exist around all values. Apr 2007
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Guided Trajectory Lifting Trajectory Ballistic Trajectory
(Ballistic Reference)
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Redesign Drivers

Redesign Drivers

- Reduced comipiesly * Reduced footprint

» Higher chute deploy Mach &
IPPW-5 altitude
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JET INTERACTIONS
9\ Jet OFF

Altered S
backshell

Jets can alter pressure on
backshell, resulting in different
control moments than intended

Control Deadbands

Pitch: 10 deg — 15 deg

Yaw: 10 deg — 15 deg

Roll:  5deg — Inf Deadband

CFD of Aero/RCS flow field shows
potential for strong interaction from
hypersonic regime to parachute
deployment

— RCS Pitch authority is degraded

— RCS Yaw authority is low to non-
existent (potential for control
reversal exists)

— Baseline is to increase control system
deadbands to minimize/eliminate
RCS thruster firings to avoid this

flow interaction

- - e =
gff//// ‘ CFD of Yaw
/]ﬁ € Thruster Firing
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2004
Entry Vehicle Azimuth Control

2006
No Entry Vehicle Azimuth Control

T B T T
1 \ )

20° Azimuth Control on Parachute No Azimuth Control on Parachute

e Originally, azimuth control was used on parachute to reduce roll
needed during terminal descent — risk mitigation
* Because of uncertainty of thruster behavior even while on the

parachute, subsequent analysis showed ability to meet azimuth
requirement while doing all azimuth control during terminal descent
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Terminal Descent Redesign Driver

In cases of low wind and no wind terminal descent scenarios, there is an increased
probability the backshell/parachute will recontact the larder

— Issue existed for MPL and Mars 01 EDL designs

New Requirement

The distance between the center of mass of the lander and center of mass of the

backshell shall be greater than 35m from Ss after lander separation to touchdown of
both bodies 30m

< > Parachute zone
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-
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2004 2005

Tip-Up and Gravity Turn Tip-Up and Gravity Turn
«  With BAM

Small Magnitude Wind

v

BAM angle

/ BAM
/ Backshell Avoidance Maneuver
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, - Launch Window =
August 3 — August 24, 2007 ——

-

Studying the history of water and habltablhty potentlal of the Martian artic

-
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